
An Improved Autoassodative Network for Controlling Autonomous Robots

Charles Hand
Jet Propulsion Labaratory

Califarnia Institute of Technology
Pasadena, California, USA
chuck@brain.jpl.na.gov

Abstmck One promising approach to neural network
controlled robotics is the use of autoassociative networks.
These networks learn to move a "sensor and effector"
vector through a plausible state-space. This approach is,
however, hindered by the intrinsically inefficient nature of
autoassociative networks. This paper outlines a novel
approach that greatly increases the efficiency and
resolution of associative networks, and has other
implementation benefits as well.
Keywords: autonomous robots, walking robots, synaptic
networks

Research Objective
Recently, there has been enormous interest in

small insect-like robots. The Department of Defense
would like to send dozens of "bugbots" to see what is over
the next hill. NASA would like to drop a fleet of bugbots
into the atmosphere of Mars. Other agencies would like
to have bugbots inspect pipes (from the inside), or fly into
buildings and then crawl from room to room looking for
inhabitants.

A very natural and effective approach to neural
network control of these small robots is the use of
autoassociative networks to process vectors composed of
current sensor and effector infanmation. This approach
has created some remarkably intelligent small robots like
those developed by Erwin Baumann and David Williams
of McDonell Douglas Aerospace [11 and Dario Flareano
and Jseba Urzelai at the Swiss Federal Institute of
Technology in Lausanne [2,3].

The use of autoassociative networks in robotics
is hindered by shortcomings that are intrinsic to
autoassociative networks themselves. For example, one
measure of a network's ability to construct meaningful
search space landscapes is the number of attractors that
can form clearly delineated basins. The typical
autoassociative net with N neurons can be expected to
form only 0.15N clearly delineated basins even though
there are 2N patterns in the search space.

Other attributes of autoassociative nets that
impede their use in robotics are caused by the difficulties
inherent in training autoassociative networks, not the least
of which is the need for a CPU and training programs.
Typical training regimes tend to focus on learning only
from good examples or only from bad examples when
robots (like animals) need to learn f?om both.
Furthermore, the stored program paradigm itself is brittle,

intrinsically serial, prone to deadlocks, and degrades
unpredictably [4]. The research described in this paper is
aimed at freeing autoassociative networks from these
problems.

Autoassociative Networks
Generally speaking, autoassociative networks are

a set of neurons that are completely connected. Each
neuron has input from all other neurons, and the output of
each neuron goes to every other neuron. In m e
instantiations, neurons also output to themselves. The
state of a neuron is Completely determined by the dot
product of its inputs and its weights. Setting the weights
sets the behavior of the network.

The neurons of an autoassociative network are
usually thought of as comprising a row or vector. Time is
a quantum phenomenon for (most) autoassociative
networks in the sense that time proceeds in discrete steps
or moments. At each moment of time, the row of neurons
forms a pattern: Some neurons are firing, some are not
firing. Hence the current state of an autoassociative
network can be described with a single binary vector. As
times goes by, the network changes this vector.
Autoassociative networks move vectors over landscaps
of possibilities.

If we look at the network from the point of view
of a single weight we start to see some of the reasons that
autoassociative networks are so inefficient. Consider a
network with N neurons, and look at neuron M -- or more
precisely look at weight W of neuron M. Learning
consists of moving W to a number that is best for most
ptkms. At the end of training, all weights are fixed to
reflect the tyranny of the majority of patterns. All the
patterns that represent minorities (from a single weight's
point of view) are ignored. The perfarmance of the
network would be improved if the fixed weights were
replaced with something more dynamic.

Nexus Controlled Robots
A nexus is a "deeper" [5] autoassociative

network. Where you would expect to find a weight in an
autoassociative network, you find the output of a network
in a nexus. In an autoassociative network, each neuron is
connected to all (or most) of the other neurons in the net.
If there are N neurons in the net, there will be (on the
order of) N2 connections between neurons. In a nexus,
the number of weights will be NJ where j>2.

mailto:chuck@brain.jpl.na.gov

At each timestep a neuron is either fving (1) ar
not firing (0) depending on the current input from a-)ll the
other neurons. Hence the matrix of weights connecting
the neurons controls the movement of a vector (neuronal
firing pattern) through N-space. The topography of
trajectories through N-space is completely determined by
the weight matrix. Lmrning consists of modifying the
values of these weights.

Here are some of the ways in which a Nexus
differs from an Autoassociative net:

1.

2.

3.

4.

5.
6.

A nexus uses synaptic networks [5,71 throughout.
Autoassociative nets do not.
A nexus changes only the effector part of a vector.
Autoassociative nets change all parts of the vector.
Tap level Autoassociative weights are replaced by
nets in nexi.
Nexus weights are binary and can be stored as
memory bits. Autoassociative weights are numbers
(stored in registers).
The only arithmetic operation in a nexus is 'majority).
A nexus has a simple learning algorithm that uses
both 'good' and 'bad' examples. Autoassociative nets
are (usually) trained using only negative examples.

A Bottom-Up Description of a Nexus
To see how a nexus works at the lowest level,

consider a very small nexus that processes vectors of
eleven elements. At the lowest level, there will be two
rows of memory locations; each row can hold eleven bits.
For ease of reference, we will represent the memory
locations with letters of the alphabet:

a b c d e f g h i j k (datazerosrow)
1 m n o p q r s t u v (dataonesrow)

The vector 00000000000 consults memary locations

The vector oooO1111100 consults memory locations
b, cT d, e, f, g, h, i j, and k.

aAc,d,p,q,r,s,t,j,andk.

Consultation consists of looking at the specific
locations and ascertaining if the majority of the locations
contain the one bit (verses the zero bit). If the majority of
the bits are ones, the value of the consultation is one, else
the value of the consultation is zero.

Learning (from negative examples) consists of
changing bits when a mistake is made. If it is known that
the consultation should have given a one and instead gave
a zero, then one or mote of the constituent bits is changed
from zero to one. The treatment of false majorities is
treated in a complementary manner. When the only high
level feedback is that the judgment was in mot, a random
set of bits is changed. For additional infannation about

the fine points of implementing the learning algorithm,
see the references on synaptic networks [5,7].

Learning (from positive examples) is
accomplished with the addition of two rows of 'creb' bits
(the name comes from biology). One of these rows is
associated with the zero data bits and the other is
associated with the one data bits:

Z Z Z Z Z Z Z Z Z Z Z (crebzerorow)
a b c d e f g h i j k (data zero row)
l m n o p q r s t u v (data one row)
N N N N N N N N N N N (creb one row)

When a successful pattern evaluation is
encountered, the creb bits that correspond to the pattern
are set to one. Negative results may change the data
rows, but positive results change only the creb rows.
When a negative pattern indicates a change in a data bit,
the corresponding creb bit is checked. If the creb bit is
zeroT the data bit is changed. If the creb bit is me, the
creb bit is set to zero and the data is left unchanged.
Hence, good examples tend to make bits 'sticky) in the
sense that they resist future changes from bad examples.
The preceding four rows of memory (two rows of data,
two rows of creb) form the lowest level or terminal node
of the nexus.

The next higher level up the nexus can be
represented as the following three rows:

A B C D E F G H I J K (zerosterminalnodes)
X X X X X X X X X X X (targetvector)
L M N 0 P Q R S T U V (onestenninalnodes)

The row of Xs holds the current vector. The
upper row is a collection of terminal nodes for
consultation by zero bits in the current vector; the lower
row is a collection of terminal nodes for consultation by
one bits in the current vector.

If the current vector is oooO1llllOOT we have:

A B C D E F G H I J K (zerosterminalnodes)

L M N 0 P Q R S T U V (onestenninalnodes)
0 0 0 0 1 1 1 1 1 0 0 (target vector)

So to generate the target vector oooO1111100,
we consult the terminal node A for the leftmost node, the
terminal node B for the next bit, and continue through C,
D, P, Q, R, S, T, J, and K. Each terminal node is
consulted using oooO11111OO and each terminal node
produces one bit of the new vector. This deepening
process can be extended to any number of levels but there
will be an exponential growth in the number of total bits.

A Top-Down Description ofa Nexus
Although we refer to the set of weights that

controls vector updating in the nexus as a matrix, it is
always more complex than a single matrix. In the
simplest possible nexus, vector updating is controlled by
two matrices: a zero matrix and a ones matrix. In actual
practice, each element of the zero matrix and each
element of the ones matrix are (often) replaced by another
level of synaptic net [5]. Therefore the elements of the
top-level matrices are not fixed, but computed. This
process of replacing a weight with a net is how simple
synaptic networks ‘snap together’ to farm more complex
networks. From a traditional artificial neural network
perspective, the weights of an autoassociative net are
being replaced with perceptrons.

the terminal node we find bits in memory locations
instead of numbers in registers as we would expect to find
at the lowest level of autoassociative nets. The only form
of arithmetic perfarmed on a set of bits is the ‘majority’
function. The majority function returns one if the majority
of bits in the input set are ones, and the majority function
returns zero otherwise. These ones and zeros may be
passed up to higher-level majority functions. Computing
evaluations as the majority of bits has two practical high
level ramifications: minimizing memory requirements and
eliminating the need for a CPU [6].

When we descend to the lowest level and reach

An Example &Nexus Controiled Behavior
Gait control in hexapod walking robots is an

excellent application of nexus control. There are three
basic hexapod gaits (see Figure 1): bi-tripodal (pretty
stable, pretty fast), side-to-side (unstable, very fast), and
caterpillar (very stable, quite slow).

Figure 1 shows the three basic modes of
locomotion.

The open circles represent raised feet and the
filled circles represent feet that are in contact with the
surface over which the hexapod is moving. These three
gaits are the results of three different schemas [8]. We
trained both nexi and ordinary autoassociative networks
on all three gaits. The standard autoassociative networks
could be preset to any (but not all) of the gaits. However,
training the gaits with autoassociative networks proved to
be very difficult without the use of auxiliary techniques
such as simulated annealing and reinforcement learning
-- techniques which introduced unnecessary complexity
and superfluous hardware.

Figure 2 shows the errors during learning of all
three gaits using a different single-layer nexus for each
gait. Training sessions included (but were not limited to)
positive feedback for farward progress and negative
feedback for falling down.

The training of the three individual one-layer
nets (Figure 2) started with random leg positions. The
nexus was trained from whatever position the last move
left the hexapod in. The three curves shown in Figure 2
are typical. The training was always successfid no matter
what the starting position.

Figure 3 shows the results for one deep nexus
learning all three gaits, with the three gaits king
reinstated every 10 steps. The learning time required by
the deep nexus (Figure 3) was less than the total time
required by the three single-layer nexi combined, but
greater than the time required by the worst of the three
single-layer nexi (Figure 2). This seems reasonable since
the single-layer nexi were trained in parallel, and the
deeper nexus required approximately 12 times as many
weights as the smaller nexi. This finding is consistent
with the findings in many areas of neural network
research Many small nets outperhm one large net. [4,6]

moa om0 mom om0 mom
0.0 + moo + 000 +mom -b 0.0

Bi-tripodal Gait - Low energy requirement; Gait most often used

000 0.0 000 om. 000
.em -+ 000 + eo. ”+ 000 7 moa

I I Side-to-side Gait - High energr, Fast escape gait I I

e m 0 + 00. + 0.0 ~ mao + eo.
oeo 00. ooe 0.0 eo.
Caterpillar Gait - Slow but steady; the gait for sticky environments or windy days

I Figure 1. The three basic hexapod gaits I

I Figure 2. Each small nexus learning one gait I

I Figure 3. A deeper nexus learning all three gaits I
Acknowledgement

The research described in this paper was peaformed at the
Center for Integrated Space Microsystems, Jet Propulsion
Laboratory, California Institute of Techndogy and was r41
sponsored by the National Aeronautics and Space
Administration.

PI
References

[11 E. W. Baumann, and D. L. Williams,
"StochasticAssociative Memory" in "The Science
of Artificial Neural Networks 11", SPE Proceedings
VO~. 1966, pp. 132- 139,1966

[61
[2] D. Floreano, and F. Mondada, "Evolutionary

Neurocontrollers for Autonomous Mobile Robots",
Neural Networks, vol. 11, pp. 141-1478, 1998 171

[3] J. Unelai, J. Floreano, M. Dorigo, and M.
Colombetti, "Incremental Robot Shaping",
Ccmnection Science, vol. 10, pp. 34 1-360, 1998 P I

R M. Golden, "Mathematical Methods for Neural
Network Analysis and Design," MIT Press, 1994

C. Hand, "A Pliant Synaptic Network for Signal
Analysis", The International Canference on
Mathematical and Engineering Techniques in
Medicine and Biological Sciences, vol. 1,
pp. 275-281, METMBS Press, 2000

M. Spitzer, "The Mind Within the Net", MIT Press,
1999

C. Hand, "Genetic Nets," Proceedings 1997 IEEE
Conference on Genetic Programming, Stanford
University, vol. 2, pp. 3541, 1997

M. A. Arbib, "Handbook of Brain Theory and
Neural Networks", MI" Press, 1995

